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ABSTRACT

In this study, a sharpening method based on a neural network (NN) approximation technique is
described to increase the spatial resolution of thematic mapper (TM) thermal-infrared (T-IR) data.
Sharpening is derived from a learned input-output mapping of edge contrast patterns between T-
IR and higher resolution TM bands. This method is similar to a reported adaptive least squares
(LS) method to estimate TM T-IR data at a higher resolution. However, there are two major differ-
ences: use of NN approximation instead of LS estimation, and application or reported multireso-
lution technique to adaptively combine spatial information from the original image and its high-
resolution estimate. With training examples from reduced resolution data, a multilayer feedfor-
ward NN is trained to approximate T-IR data samples on the basis of a possible nonlinear combi-
nation of data samples from three other TM bands. The trained NN output for full-resolution input
data is an estimate of T-IJR image at 30-m resolution. A potential benefit of this sharpening
method is that the NN approximation technique can be developed from only a subset of image
scene samples, and yet be applied to the entire scene. Preliminary examples show sharpening at
four times higher resolution, but further evaluation with a high-resolution reference image is
recommended. Although results are encouraging, a different training strategy to improve network
generalization is suggested as a way to improve the sharpening process.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.



1. Introduction

Image sharpening has been defined as a resolution enhancement process where information from
a higher spatial resolution image is used to increase the resolution of a second lower resolution
image (Iverson and Lersch, 1994). This process is also generally referred to as image merging or
image fusion (Schowengerdt and Filiberti, 1994). For many applications, such as image display
and interpretation, it is important that the enhanced, merged image incorporate as much spatial
information as possible from the individual images, perhaps at the expense of spectral fidelity. As
much as possible, sharpening techniques should preserve the spectral characteristics of the origi-
nal image while increasing the spatial resolution. However, with applications that rely on machine
classification of multispectral data, spectral fidelity can be the most important criterion of a sharp-
ening process. Some reported techniques directed toward increasing the spatial information
include intensity-hue-saturation, principal component, and high-pass filtering techniques (Iverson
and Lersch, 1994).

The Landsat thematic mapper (TM) is a dual spatial resolution sensor that records reflected and
emitted energy in seven spectral bands, which range from visible (blue) to thermal-infrared (T-
IR). Six of the spectral bands have a 30- by 30-m instantaneous field of view (IFOV). The seventh
band (labeled band 6) has a 120- by 120-m IFOV and records, in the 10.4- to 12.5-um spectral
band, the infrared radiant heat flux from surfaces. These data are important for vegetation stress
analysis, vegetation classification, and soil moisture studies (Jensen, 1986).

Unfortunately, the difference in resolution of band 6 causes many difficulties in analyzing TM
data. With discriminate analysis of TM data, often band 6 data are omitted, resulting in loss of
information (Nishii, Kusanobu, and Tanaka, 1996). Spectrally accurate, enhanced spatial resolu-
tion T-IR data at 30-m resolution might help to identify vegetation communities and distinguish
vegetation density in areas consisting of mixed land cover (for example, open water and vegeta-
tion) like that found in the Everglades of southern Florida.

This report describes initial results of an image-sharpening method that makes use of neural
network (NN) approximation techniques. This method is similar to a reported adaptive least
squares (LS) method for sharpening TM T-IR data at a higher resolution (Tom, Carlotto, and
Scholten, 1985) because the latter approach to sharpening suggests an implementation with NN
approximation and other techniques that, in turn, simplify the overall process and possibly
improve performance. The intended application of this technique is to improve the automated
classification of vegetation cover from TM data.

Two previously reported adaptive methods for sharpening TM T-IR data from higher resolution
TM data, which are similar to the method reported here, are described in the next section. (A local
statistical predictor approach to enhancing TM thermal band image data that is based on fixed, not
moving or sliding, windows was reported by Nishii, Kusanobu, and Tanaka (1996). In passing, it
is noted that adaptive methods are needed to improve spectral fidelity of sharpened multispectral
data. As pointed out by Tom (1986), Schowengert (1980) first described a highpass filter sharpen-
ing technique that used adaptive techniques in order to deal with the edge contrast reversals
frequently seen in visible and infrared images (Landsat multispectral scanner data). These oppo-
site contrast patterns correspond, for example, to vegetation-soil boundaries on the image scene.



It is believed that because of these localized opposite contrast effects, adaptive sharpening algo-
rithms are required to improve spectral fidelity. On the other hand, numerous reported sharpening
techniques based on global characterization of the data also can be quite effective when, because
of scene content, there are few opposite contrast patterns.

The process reported here is adaptive to the local edge patterns and also incorporates a backprop-
agation-trained (to minimize a sum of squares approximation error) NN approximation method to
estimate, with minimal error, sharpened data.

II. Background

The earliest report on adaptive sharpening of TM T-IR data that explicitly included optimal esti-
mation methods was given by Tom, Carlotto, and Scholten (1985). They exploit the observation
that edge contrast boundary information appears locally correlated across bands by developing an
adaptive LS method to optimally estimate T-IR data at higher resolution using a moving window
of samples from the higher resolution TM bands. A frequency domain replacement process was
used to combine the estimated and original data. Using simulated low-resolution data, they
reported a relatively low mean-square gray-level error (2.21) between true and sharpened data
(band 7 as a function of bands 5, 4, 3, and 1). Basic steps to this process included the following:

1. reducing resolution by lowpass filtering and subsampling,

2. calculating LS estimator coefficients for T-IR data (at 120 m) using data from the other
reduced-resolution bands,

3. estimating T-IR data at 30 m from interpolated estimator coefficients and full-resolution
data, and

4. combining the high-resolution estimate with the original data by a frequency domain,
highpass and lowpass filtering process.

Recently, Iverson and Lersch (1994) described a TM T-IR sharpening technique that was based on
NN estimation methods and the multiresolution image pyramids of Burt and Adelson (1983). The
NN was trained to estimate the required higher resolution, bandpass pyramid data needed for
sharpening. The TM images were first decomposed into a multiresolution image pyramid of
Gaussian (lowpass) and Laplacian (bandpass, or detail) images at sample distances of 30, 60, 120
m, and greater. An NN was trained to estimate reduced-resolution band-pass data from the other
detail images. Output of the trained NN, an estimate for the T-IR bandpass images at the next two
higher resolutions (60 and 30 m) of the pyramid, was used to reconstruct a sharpened image. Iver-
son and Lersch observed that because of the local correlation between the band-pass images, the
NN was able to learn the input-to-output mapping. Although no quantitative measure of spectral
fidelity was reported, their results indicate that a multilayer NN can estimate multiresolution
(highpass) detail information over a 4:1 scale.

Aside from the important multiresolution approach, one difference between the two previously
described sharpening methods is that for the LS method, the estimated image was a function of
image data, without bandpass and lowpass decomposition. Conversely, for the NN-based process,
highpass data, and at multiple resolutions, was estimated from highpass data. Comparative evalu-



ation of the performance of these two techniques would be beneficial. In the following experi-
ment, a multilayer NN is used to estimate T-IR data as a function of image data, not multiresolu-
tion derived bandpass data, from three higher resolution bands.

III. NN Sharpening Method

The multiple processing steps for the NN-based sharpening technique described in this report are
similar to those for the sharpening technique reported by' Tom, and others (1985), with these
major differences: (1) T-IR data at higher resolutions are estimated by a trained multilayer NN
instead of an adaptive LS estimator, and (2) estimated and original data are adaptively combined
by a reported multiresolution, image pyramid merging technique instead of a frequency domain
replacement technique.

The processing steps below (and shown in figure 1) are for the case where the original 120-m
IFOV T-IR data have been interpolated to a 30-m sample distance and coregistered with the other
image bands (that is, TM level 1 scene). In the following, an estimator for band 6 is developed
from the arbitrary combination of bands 7, 5, and 2; other band combinations are the subject of
further study.

1. Bands 7, 6, 5, and 2 image data are reduced from 30- to 120-m sample distance by a
sequence of lowpass filtering and down sampling; a Gaussian image pyramid process
(fig.1a.)

2. Reduced-resolution data and supervised learning are used to train an NN to
approximate band 6 data (10.4-12.5 um) from the arbitrary combination of bands:

7 (mid-infrared: 2.08-2.35 um), 5 (mid-infrared: 1.55-1.75 pm) and 2

(green 0.52-0.60 pm) (Jensen, 1986) (fig. 1b).

3. Output of the trained NN provides an estimate of band 6 data at 30 m when given
full-resolution data from bands 7, 5, and 2.

4. The higher spatial frequency information from the NN-estimated high-resolution
image is transferred to the band 6 image by means of a reported multiresolution image
pyramid-based technique (fig. 1¢).

A potential advantage of the NN approximation of steps 2 and 3 is that the NN can be trained on a
small, representative subset of the image data and then applied to the entire image. In contrast, the
adaptive linear LS sharpening method requires computing and then interpolating linear (LS) esti-
mation coefficients for each local window of the entire image.

As shown in figure 1, the reduced-resolution data of step 1 were derived from the third level of the
Gaussian image pyramid sequence after two iterations of lowpass filtering and down sampling by
a factor of 2 (that is, discarding alternate rows and columns) (Burt and Adelson, 1983). Separable
lowpass filter coefficients were 1/16 [1 4 6 4 1] (Burt, 1985). This multiresolution process was
used because of its computational efficiency and implementation with small-kernel, one-dimen-
sional filters.

Step 4 is the application of a reported Laplacian pyramid transform technique (Ogden, Adelson,



Bergen, and Burt, 1985) for adaptively combining spatial detail from two coregistered images that
differ only in sharpness. (The article by Li, Manjunath, and Mitra (1995) has additional examples
of this fusion technique.) This step is included to preserve the lowpass, gray level value of the raw
T-IR data. As applied here, step 4 (fig. 1c) includes the following:

1. decomposition of both the TM-IR image and its high-resolution estimate into two
Laplacian (bandpass) image pyramids (two bandpass resolution levels),

2. selectively replacing individual Laplacian image samples from band 6 with those from
the estimated band 6 on the basis of a maximum selection rule, and

3. reconstructing a sharpened T-IR image from its modified bandpass-data.

In effect, the maximum selection rule causes excess spatial detail to be transferred to the lower
resolution image because the sharper contrast boundaries of the estimated image have larger
amplitude.

IV. Approximation by Neural Network

The function of the multilayer NN is to estimate band 6 T-IR data at a higher resolution on the
basis of a learned, potentially highly nonlinear, relation between edge contrast patterns of band 6
and bands 7, 5, and 2. The estimator was developed in a two-step process. Supervised backpropa-
gation learning techniques (Rumelhart, Hinton, and Williams, 1986) with reduced-resolution
(120 m) data were used to train a single output NN to approximate individual band 6 data
samples, as a function of a 3- by 3-sample neighborhood from an arbitrary combination of bands
7, 5, and 2 (27 input samples). Backpropagation training attempts to minimize an LS objective
function (the sum of squared residuals) using a gradient descent technique (Chen and Jain, 1994).
Once trained, NN output for higher (that is, original) resolution input data is taken as an estimate
of T-IR data at a higher resolution.

This output is, to some degree, an accurate estimate of true 30-m data because of the network’s
property of generalization; that is, similar input (to the training data) produces similar output; thus
the network approximates the correct output for an input not in the training data (Wasserman,
1993). A network that does not generalize, but produces the correct output for training data input,
would be of little value; it could be replaced by a simple lookup table. In this application, general-
ization allows network learning based on a limited number of input-output example pairs from a
subarea of the image, if the examples are representative of patterns throughout the entire image
and over several scales of resolution. The subject of further study, this process assumes a self-
similarity exists between edge contrast patterns of the reduced and full images.

V. Network Configuration and Training

A multilayer artificial feedforward NN consists of layers of interconnected neurons or processing
elements (PE). The interconnections, or weights, are repeatedly modified during a training phase
so that the NN performs a desired mapping between input-output example pairs. Figure 2a shows
the type of single hidden layer network used in this application. The output (Out) of each PE



(fig. 2b) for its inputs x; and input interconnection weights w; is

n
Out = f(net) = f ( iz Oxiwi] (1)
where x, wy are input bias (fixed value) and bias weight, respectively; f(-) is the nonlinear
sigmoidal function, and net is the net sum of x; w; for i =0,...,n (Wasserman, 1993). For back-
propagation (BP) learning, f(nef) must be differentiable. Two widely used activation functions are
f(net) = 1/(1 + exp(-net)) and f(net) = tanh(ner). Tanh(.) was used because its derivative is largest
when | net | is small. Thus during BP training, stronger weight modification is made to PE’s

having small | net |; thatis . . . those which are “in doubt” about their output” (Hertz, Krogh, and
Palmer, 1991).

The process of training an NN with BP learning requires the determination of several interrelated
network parameters: network size (number of hidden layers and number of PE’s per layer,) train-
ing set size, learning rate parameters, numerical range for initial values of the weights, and
amount of training needed.

The NN used here has 27 inputs and 1 output (estimate of band 6 data sample). One hidden layer
was used here because this is sufficient to produce an arbitrary continuous function mapping of
input-to-output to any desired degree of accuracy given a sufficient, but unspecified, number of
hidden layer PE’s (Hornik, Stinchcombe and White, 1989). However, this reference does not
address network training to produce this mapping nor performance relating to unseen data that are
not part of the training data set; that is, the generalization problem.

One way to obtain good network generalization is to use the smallest NN that will fit the problem.
This may be done by successively training smaller networks until the smallest one that meets the
required performance is found. Another approach is to train a larger than necessary network and
then remove PE’s that are not needed (Reed, 1993). Often, a large network can be a poor choice
because too many hidden layer PE’s (and interconnection weights) lead to poor generalization.
There are methods for improving generalization by ‘pruning’ or removing selected PE’s or
weights (Hertz, Krogh, and Palmer, 1991; Reed, 1993).

For these initial results, training and validation data sets (7,938 samples each) were simply from
the lower half and upper half, respectively, of a 128- by 128-sample (120-m sample distance)
image, less border samples. The generation of a more representative set of training patterns might
be based on a process for selecting edge contrast patterns throughout one or more scenes.

A simple process was used to find a small number of hidden layer PE’s. Two NN’s (15 and 10
PE’s in the hidden layer) were trained for an arbitrary 10 presentations of the training data, and
their RMS error to the training data set compared. For this and the next training, momentum was
always 0.0 and learning rate was 0.1 for the first 7,938 samples, then 0.01 for the remaining train-
ing. The range for initial random values of the weights was -0.1 to 0.1. Because each had compa-
rable error, the smaller network was used. Presumably this less complex NN would be less prone
to overlearning or overfitting to the learning data.



Next, the 27 input, 10-PE hidden layer, 1output NN was trained for an arbitrary 120 presentations
of the training data (973,800 weight updates). The amounts of RMS error for network rescaled
training and validation data sets were 0.0375 and 0.0315, respectively, after 20 presentations of
the training data, and at the end of training 0.0321 and 0.0354, respectively.

A poor assumption with these first tests was that this training would not lead to overlearning and .
poor generalization. Thus, a modified training strategy is recommended to minimize overtraining,
or overfitting to the training data, whereby training proceeds until network generalization, as
measured by network performance to the validation data, starts to increase. This approach is moti-
vated by the fact that during the early stages of training, both training and test-validation error
decrease as the network generalizes to the underlying data. However, with further training, train-
ing error will continue to decrease, but error to the validation data will eventually reach a mini-
mum and then increase (Reed, 1993). Training should stop at this minimum.

VI. Image Test Results

Figure 3a shows the TM T-IR band 6 data reduced to 120-m resolution. (With the level 1 scene,
TM-IR data are interpolated to a 30-m sample distance.) Training and test data were from the
upper half and lower half of the image, respectively. The NN-estimated band 6 image as a func-
tion 3- by 3-sample neighborhood (27 total) from bands 7, 5, and 2 is shown in fig. 3c. The band 5
image (fig. 3b) is given for comparison. Note the improved spatial detail of the estimated, rather
than the true, band 6 image. This unexplained detail, which may be due to overfitting to the train-
ing data, is subject to further study.

Figure 4 depicts the 120-m IFOV T-IR band 6 image, interpolated to a 30-m sample distance (that
is, TM level 1 scene) and figure 5 is the high-resolution NN estimate for band 6 as a function of
30-m bands 7, 5, and 2. This estimated image was used (step 4) to adaptively sharpen the raw
band 6 image (fig. 1c) by means of a reported multiresolution technique. Figure 6 is the final NN-
based, sharpened thermal infrared band 6 image. Shown for comparison is the 30-m band 5 image
(fig. 7) and part of a U.S. Geological Survey 7.5-minute topographic quadrangle (Opa-Locka,
Fla.) map corresponding to the upper third of this image. Figure 6 has many sharpened, well-
defined boundaries; for example, the grass-ponds boundaries in the upper center area. With
discriminate analysis of TM multispectral data, this sharpened T-IR data may provide additional
information to improve classification.

Because of the limited number of images available for these first tests, the performance of this
sharpening technique with opposite contrast edge pattern data has not been evaluated. These are
the first examples produced by this NN method for sharpening TM T-IR data. It should be noted
that these promising results were derived from an NN that was trained with only a relatively small
number of edge contrast pattern examples.



VII. Conclusion

An NN-based technique for sharpening TM thermal band data was used to develop an NN method
to approximate thermal data as a learned function of data from three other TM multispectral
bands. Although these first experimental examples are promising, they were only based on a
simple NN training strategy with limited training examples. Further study and tests are needed to
ensure that the NN is not overtrained and in this process has good generalization properties. An
evaluation of radiometric fidelity is also needed and can be accomplished by sharpening a simu-
lated low-resolution image computed from another TM band (Tom, Carlotto, and Scholten, 1985).
This would allow quantitative comparison with a known true (but not thermal band) image.
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Figure 1. Neural network based method for sharpening low-resolution TM thermal
infrared (T-IR) data from higher resolution TM data.
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a. An example of a multilayer feedforward element, or neuron.
neural network with three inputs, one output, and
two processing elements (PE) in hidden layer,
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b. Neuron or processing element model.
W, is bias weight, with a fixed input of 1.

Figure 2. Neural network and neuron models.
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